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A set of second-order modelled equations for the motion of particles are presented. 
We consider the effects of the particle inertia and the crossing-trajectories effect on 
the particle dispersion. A simple case of a particle mixing layer in a decaying 
homogeneous turbulence for light and heavy particles is calculated. The results show 
that the crossing-trajectories effect on particle dispersion is very significant, while 
inertia only has a slight effect. This behaviour has been observed in experiments 
(Wells & Stock 1983) and is well predicted by an asymptotic analysis (Csanady, 1963). 
The calculation also shows that there is a significant difference between Favre- 
averaged particle velocity and conventional-averaged particle velocity in the low- 
particle-concentration region. All calculations are in good agreement with Wells & 
Stock’s experimental data. 

1. Introduction 
The study of particle behaviour in a turbulent flow is often of importance : it may 

help us to predict the dispersal of contaminants in the atmosphere and ocean, and 
may also be important in LDA measurements in which the effect of concentration 
fluctuations of the seeding particles on the measurement of turbulence statistics may 
be significant. 

Although the concentration of particles in a fluid is a scalar, its behaviour is quite 
different from other scalars (temperature, moisture, gas species etc.) because of inertia 
and the crossing-trajectories effect (Yudine 1959). The behaviour of scalars such as 
temperature and moisture in a turbulent flow has been extensively studied with both 
experiments and theoretical models; the behaviour of particles has been studied less 
(Csanady 1963; Snyder & Lumley 1971; Meek & Jones 1973; Lumley 1978c; Nir & 
Pismen 1979; Wells & Stock 1983; Lottey, Lumley & Shih 1983). 

The influence of the crossing-trajectories effect is quite clear: it  decreases the 
particle dispersion, because the particles fall from one eddy to another, so that the 
correlations between particle and fluid velocities decreases. However, the effect of the 
particle inertia is not so clear. The inertia effect is mainly represented by the particle 
time constant. Csanady (1963) showed that an asymptotic (i.e. long-time) particle 
diffusivity is independent of the particle time constant. Wells & Stock’s (1983) 
experiments also show that there is not a large difference of diffusivity between light 
particles and heavy particles, although there is an indication that the diffusivity of 
the heavy particles is a little larger than that of the light particles. Our second-order 
modelling calculations predict this observed behaviour. 

In this paper we first derive a set of second-order modelled equations under the 
conditions that the concentration of particles is small enough (say, less than 0.003, 
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Lumley 1978c) so that the particles can be considered as non-interactive, and that 
the timescale ratio (the ratio of the particle time constant to the Kolmogorov 
timescale) and the lengthscale ratio (the ratio of the particle size to the Kolmogorov 
lengthscale) are small. The influence of inertia and the crossing-trajectories effect on 
the particle diffusion are considered. Secondly, we describe the models required by 
the closure. Finally we carry out calculations of a particle mixing layer for the light 
and heavy particles used by Snyder & Lumley (1971) and Wells & Stock (1983) in 
their experiments. The calculations show that the crossing-trajectories effect indeed 
dominates the particle dispersion. The influence of the particle inertia appears to 
increase only slightly the effective diffusivity even for heavy particles. All the 
calculations compare favourably with the experimental data of Wells & Stock (1983). 

In  addition to the particle dispersion, we also calculate the difference between 
Favre-averaging and conventional averaging for the particle velocity and the 
variance of the particle-velocity fluctuations. The particle-velocity differences 
between Favre-averaging and conventional averaging are significant, especially in the 
low-concentration region, but there are no significant velocity-variance differences 
between the two averaging methods. These results are relevant for the analysis of 
LDA measurements. 

2. Basic equation 
Let us consider a fluid with local velocity u, and constant density p,  containing a 

monodisperse cloud of undeformable particles having radius cr. The volume fraction 
is considered to be so small (say, less than 0.003) that the interaction between 
individual particles may be neglected (Lumley 1978~). The particles are assumed to 
be too large for Brownian motion to be important. We must also assume the particles 
are small enough compared to the Kolmogorov microscale so that the flow about a 
particle is nearly a simple shear. We consider the particle cloud as a continuum 
(Lumley 1978c), a t  least on scales of the energy-containing range. In geophysical 
situations, the above assumptions are true for naturally occurring aerosols and fogs 
in turbulent flow. For some other situations, say foams and slurries, there exist strong 
interactions between particles. Here we only deal with situations in which the particle 
cloud can be considered as a non-interacting continuum. Hence, the particles only 
interact with the fluid. In general the equation of motion of a particle is extremely 
complicated. However, if the relative Reynolds number (based on terminal velocity 
and particle size) is less than 4, the size of particles cr is small relative to the 
Kolmogorov lengthscale 7 and the particle time constant rp is short relative to the 
Kolmogorov timescale rk, then the equation of motion of a particle can be rigorously 
written as (Lumley 1978c) 

zip, + Up& 5 upj = (Ui  - U p i ) / 7 p  + st, (1) ' 

where up, represents the particle velocity, u, is the fluid velocity, g, is the gravity 
vector and rp is the particle time constant, given by (according to Stokes flow) 

rp  = mp/6xcrp. 

Here and throughout we have taken the density of particle material to be large 
relative to fluid density, for simplicity. Factors depending on the density ratio may 
easily be introduced, modifying g1 and r p  to restore the general case. Here mp is the 
mass of a particle, LT is the radius of the particle and p is the viscosity. If we define 
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Hollow Solid 
glaas glass corn Copper 

Diameter (pm) 46.5 87.0 87.0 46.5 
Density (g/cm*) 0.26 2.5 1 .o 8.9 
Time constant (ms)? 1.7 45.0 20.0 49.0 
Timescale ratio1 0.145 3.85 1.72 4.21 
Lengthscale ratio 11 0.105 0.198 0.198 0.105 
Stokes velocity (cm/s) 1.67 56.2 22.5 57.0 
Terminal velocity (cm/s)q 1.67 44.2 19.8 48.3 
Reynolds number 0.05 2.48 1.10 1.45 

t Baaed on terminal velocity; 1 the fluid timescale is 11.6 ms at z / M  = 73; 11 the Kolomogorov 
microscale is 0.043 om at z / M  = 73; 7 computed from table 5 in Fuchs (1964, p. 32). 

TABLE 1. Particles and relevant parameters 

5 pm glass 57 pm glass 
Parameter sphere sphere 

Diameter (pm) 5 57 
Density (kg/m) 2475 2420 
7p (ms) 0.192 24.4 
?p/?kt 2.34 x lo-* 2.972 

Stokes velocity (cm/s) 0.188 23.26 
Terminal velocity (cm/s) 0.188 23.16 
Reynolds number 6.30 x lo-* 0.887 

qp (coulomb) 1.66 x 1O-l6 9.71 x 10-14 

t rk = 8.21 x s at x / M  = 45. 

TABLE 2. Particle data 

c as the mass of particles per unit volume, or simply call it  particle density, then we 
may write a conservation equation as 

c+ (CUP#), i = 0.  

For the equation of fluid motion, we should consider the force exerted upon a unit 
volume of fluid by the particles. The force exerted on the fluid by a unit mass of 
particles is ( U , ~ - U ~ ) / ~ ~ ,  so that the volumetric force exerted by the particles is 
C ( U ~ ~ - U ~ ) / ~ ~  and the equation of fluid motion can be written as 

1 c upi - ui 

P 7 P  
u*+u,ut,* = - - p , , + p  +vu,,jj* (3) 

Conservation of mass for the fluid is 

U i , (  = 0. (4) 

Equations (1)-(4) are the basic equations for the instantaneous quantities c ,  up#, ut 
and p .  The restrictions on (1) are Stokes flow around the particle and small timescale 
ratio of ~ , / 7 ~ .  Tables 1 and 2 are the particle data taken from Snyder t Lumley (1971) 
and Wells t Stock (1983). From these tables we can see that (1) is only valid for light 
particles (hollow glass and 5 pm glass sphere). For heavy particles (say, 87 pm glass 
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and 57 pm glass for which the timescale ratio > 3) (1) is doubtful. However, the range 
of validity of (1) can be extended to  a relative Reynolds number of 10 (which 
corresponds to a heavy particle) by using different time constants in the vertical and 
horizontal directions (Lumley 1978~) .  

If the inertia term (left-hand side of (1)) can be neglected under some circumstances 
(Lumley 1978c) then we obtain the solution for the particle velocity upi 

(5) upi = ui + 7p gi. 

The equation of fluid motion becomes 

1 C 

P P 
ti, + Ui,  j uj = -- p ,  i +-gi + vui, ij, 

and (2) becomes c + ( u i + 7 p g i ) c , i  = 0. (7) 

Equations (5)-(7) are suitable for thc case of atmospheric aerosol particles (Lottey 
et al. 1983). Now if we want to include the effect of inertia, then (5 )  must be modified. 
We know that T~ is smaller than the Kolmogorov timescale 7k, which is the smallest 
timescale in the turbulence. We may expand up$ in terms of 7p as follows: 

upi = ui+upTp+ ... . 

up = - (4 + u, Ui, 3)  + 90 

Substituting (8) into (1) gives, for ul1), 

and the solution of upl is, instead of (5), 

Upf = u* - 7p(zii + u, ui, + 7p gi + O(7i). 

Substituting (9) into (3), we obtain 

1 C 

P P  
( 1 + ;) (tit + uz, j ?Aj) = - - p ,  i + - gi + vui, j j ,  

(9) 

and (2) will become (using (9) in (2)) 

c +  (ua +TP 92) c ,  i = 7p[c(ui +u, %,j)I, i. (11)  

At this point we should note that (9) is useful for forming correlations between particle 
and other quantities, but not for the particle Reynolds stress and particle turbulent 
energy, because (1) under the approximation (9) implies Dupi/Dt = Du,/Dt, and this 
means no difference between particles and fluid for Reynolds stress and turbulent 
energy. 

If the density ratio c/p is small then the fluid motion will be approximately 
unchanged by the presence of the particles, i.e. 

1 

ui+ui , juj  = - - p  i+vu $ 9  ,J. P I  

We will use (9), (1 1) and (12) to study particle dispersion with the restriction to Stokes 
particles in mind. 

By using the following Reynolds decomposition 
- - 

upi = upi+u;i, ui = ui+u;, p = ji+p', c = C+c' 
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from (12)  we obtain 

(13) 

(14) 

(15) 

(16) 

- 1 

P 
Uf +q q, + (.;I,, = -- P ,  f + 4, ,,, 

T i ;  +q u;, * + u; q, * + u; u;, * - (ulu;,, * = -- prt + vu;,,,, 
1 

P 
7 -  - 

and, from (9), up, =v*++J+ Vpc, 
P 

where V,, = rPg1, which is called the particle terminal velocity. 
From ( l l ) ,  -I* (17) 

c- 1 -  
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and, from (14), 

Finally we obtain 

where Ec is the dissipation rate of P. For the flux, we may form 
- 7- - 

c/u* + UI 4 c, , + q u t , ,  + qq), 3 + (c’u; UJ, j + d5 U* v,, 
1 17-7 II 

= -- P m+ v q j , + T 7 p  [ c, k (-; p ,  k uI + v u I U k , j j )  

7 - 
+‘( ’,, k =k,j+% uj, k ‘k, j +% uj,  k u k , j )  +%k ( -d p, k + Vuk, 5,) 

+-( ‘ j ,  k vk , j )  + (-p P: k c: k ui+ ut c ,  k uk,jj) 
1 - 

If we assume local isotropy for third- or higher-order moments at  high turbulent 
Reynolds number Re % 1, then we obtain 

The Reynolds-stress equations are unchanged : 
- -  --  n - -  

utu5+ uk(u;u;),k+u,uk U j , k + u j U k  ui ,k+(u;u;u;) ,k  

1 - 7  
P 

= --@, t U j + p , j  u$) + v(;;, k k + a ,  k k ) .  (21) 

In (19) we have introduced a dissipation term E,. Its exact mechanism is not clear, 
but, in order to reflect the fact that the particle-density fluctuations must be 
suppressed on a scale smaller than the interparticle distance (i.e. to avoid an 
ultraviolet catastrophe), such a term is required (Lottey et al. 1983). Such a term is 
also necessary to prevent unbounded growth of particle-concentration-fluctuation 
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variance, another aspect of the same phenomenon. Therefore we need equations for 
Ec and S, scalar dissipation and mechanical dissipation rate respectively. They can 
be written as : 

(22)  
- -  n 2; 

d c + V , +  V p , ) E c , , + ( & , q , j  = -pP;  

All the (unknown) physics in these general transport equations is hidden in the 
dimensionless terms @ and P, which must be modelled on a more-or-less empirical 
basis. The equations (17) ,  (19), (20) ,  (21)  and (23)  are the bases on which we study 
the behaviour of particles in a turbulent flow. This set of equations does not include 
the effects of the presence of particles on the fluid turbulence. In principle there is 
no great difficulty in including these effects by starting again from (10). We believe 
that the equations we have derived above are suitable for studying the most 
important aspect of particle behaviour - dispersion. 

3. Models 
Now let us consider a decaying homogeneous isotropic turbulence in which there 

are no mean-velocity or mean-pressure gradients. In this case, the terms which must 
be modelled are the following: 

3.1. Pressure correlation t e r m  
In the present flow, we may model them as (Shih & Lumley 1981) 

- 
- &  - -1 2 

1 

P q 
--- + v c%,,* - JQ, 8 - p cut =ij , 

1- 
P 

-- p ,  k ut- u;,j u i , j  = -g8$k7 

and from the zeroth-order equations of C’BU; (Shih 1984) 

3.2. Third moment8 
Lumley (1978a) constructed a form for third-moment terms from first principles. 
That is, these terms are not modelled in the usual sense, but are obtained by a limit 
process for small perturbations about a (Gaussian) equilibrium state, reminiscent of 
non-equilibrium thermodynamics of mixtures, where the second-order quantities 
(variances and fluxes) play the role of species. These model forms contain no new 
adjustable constants. 
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Modifications of these forms for the presence of the terminal velocity or the particle 
time constant would be of the same order as, or higher order than, the terms already 
neglected in the lengthscale-ratio expansion. 

3.3. Drift term 
Lottey et al. (1983) derived a model for the drift term from the realizability principle 
as follows: 

As discussed in detail there, this is the term that is responsible for the decrease 
in particle-/fluid-velocity correlation due to the crossing-trajectories effect. This effect 
is not embodied in (22) as might be thought, since that equation is scalar, and hence 
cannot distinguish horizontal from vertical. What is needed is an effect that differs 
in the horizontal and vertical, and that differs depending on the relative orientation 
of the particle flux and the gravity vector. 

This term also embodies a hitherto unknown physical effect resulting from 
inhomogeneity (see Lottey et al. 1983). 

3.4. Model terms in dissipation equations 

Lumley (1978a) suggested 

and + = ~+0.98exp[-2.83Re-:][1-0.33 ln(1-5II)I. 

Shih (1984) suggested a modified model for v according to an assumption that 
the ratio of mechanical timescale q2/5 to the scalar timescale 2 / E  will approach some 
‘equilibrium’ value. The form of 9” is 

where = l + r +  l . lr2F& 
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Particle 

seeding f RQURE 1. Configuration of I the pertiole mixing layer. 

8 
Re2 

p =  2+exp[-7.77/Rei]y,  

a =0.7778, b = -0.725, 

re A 2.5, 

I1 = 0 (isotropic turbulence). 

We retain a weak Reynolds-number dependence for large but finite Reynolds number 
in order to match experimental data. 

4. Two-dimensional mixing layer 
Now let us consider the simple case of a particle mixing layer in a grid turbulence 

with a constant mean velocity Ut = (U,  0, - V,,). The particles are seeded from the 
lower half-grid to form a particle mixing layer in a grid turbulent flow, see figure 1. 
To hold the centre of the particle mixing layer at a fixed height, we have introduced 
an upward fluid velocity to  cancel the drift. In  effect we have slightly rotated the 
free stream upward. 

In this flow, the turbulence is isotropic, the mean density is a function of x, 2: 
C = F ( s ,  z) ,  the particle terminal velocity is V,, = rP gz, which is a negative value. The 
equations for this simple case become 

(24) 

- a 2  
ax 

u-+2m 

+ 1 !? ( -1 3 + u&, - 2 ~ , ,  (25)  

- acw a= -ac l a$  1- 
U -- V -+ V p , z p + k z - + - -  a Z  3 a2 = - - P , ~ C + U E ~ F , ~ + ~ , [  p -1- 3% '7 ' (26) 

2aZ p 

ax p~ ax 
(27 1 

(28) 

(29)  

-ap u- = -2E, ax 
-as s2 U - = - = $ ,  

ax p2 
uc+e-=-=p. - as a= s; 

ax a2 C2 
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where 

5. Results 
We have calculated a set of particle mixing layers. The particle data (listed in tables 

1,2) and the fluid-turbulence data are taken from Snyder & Lumley (1971) and Wells 
& Stock (1983). We will present the calculations of the distributions of the particle 
mean density c t h e  intensity of density fluctuations (s), the flux CW and%, the third 
moment &, the ratio of mechanical timescale to scalar timescale r (defined by 
(?/E) (Ec/2)), and the effective diffusivity y = -cW/(ac/az). We also calculated the 
differences between the density-weighted- and conventional-mean particle velocity 
and variances of particle-velocity fluctuations, which are defined by 

CUPDC = (uPl) - lUpi, CUP2DC = ( ~ 2 )  -uTl, 

where 

Here upf, uLa are the instantaneous velocity and velocity fluctuations of the particles. 
Using the above definitions we may obtain 

- -  
clul 

C U P D C = d ,  
C 

Using (9) we may obtain 

x3 - 
6 CUPDC = 2 - 

C , 

- (CUPDC)2. c CUP2DC G 
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1 

0.8 - 0.032 - 
0.024 - 0.6 - 

0.4 - 
0.2 /L/ 
0 

-0.4 -0.2 0 0.2 0.4 -0.4 -0.2 0 0.2 0.4 
Z/Xk 21x1 

FIGURE 2. Calculated distributions of the Statistical quantities: -, 57 pm glass particle with 
terminal velocity 23 cm/s; ---, 58 pm glms particle with same terminal velocity but zero inertia 
(TP = 0) .  

The existing experimental data we have are from Snyder & Lumley (1971) and Wells 
6 Stock (1983). Both of those experiments include the effect of inertia and the 
crossing-trajectories effect on the dispersion of particles suspended in a turbulent 
fluid. In a natural gravitational field, the particle motion is governed by the coupled 
effects of the particle inertia, the particle’s free-fall velocity (crossing-trajectories 
effect) and the turbulent flow field. It is expected that the dispersion of light particles 
is controlled mainly by the turbulent flow field, but the dispersion of heavy particles 
should also strongly depend on inertia and the crossing-trajectories effect. The 
mechanism of the crossing-trajectories effect is clear : it causes heavy particles to fall 
from one eddy to another so that the particle-velocity autocorrelation decreases faster 
than i t  otherwise would. However, the influence of inertia is not so clear. In order 
to understand the individual influence of inertia and the crossing-trajectories effect 
on the dispersion of particles, Wells & Stock (1983) did the following experiments: 
the particles were charged before entry into the test section ; a uniform electric field 
within the test section was used to suppress or strengthen the effect of gravity, making 
the terminal velocity zero, smaller or larger than the normal value. In  this way they 
could isolate the individual consequences of particle inertia and the crossing- 
trajectories effect on the dispersion process. Their experiments are very helpful in 
exposing the mechanism of heavy-particle dispersion. 

In our calculations, we simulated Wells & Stock’s (1983) experiments by varying 
the terminal velocity from zero to 125cm/s for heavy particles (57 pm glass 
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1.6 

1.2 

0.16 - 
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0.08 - 
0.04 - 

- CUP2DC \ 
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-0.4 -0.2 0 0.2 0.4 40 60 80 100 
21x4 X I  M 

FIQURE 3. Calculated distributions of the statistical quantities for 57 pm 
glass particle with terminal velocity 23 cm/s. 

particles), and from zero to 25 cm/s for light particles (5 pm glass particles). We also 
calculated cases which correspond to Snyder & Lumley's (1971) experiments (87 pm 
glass particles, hollow glass and corn particles). 

Figures 2 and 3 are typical calculations for the 57 pm glass particles in a normal 
gravitational field (with terminalveloci ty 23 cm/s) ; we present the meanconcentration 
- 6, standard deviation of concentration fluctuation (?);, flux cu), c2op, third moment 
c2w, effective diffusivity y ,  differences of the density-weighted- and conventional- 
meanparticlevelocityandvarianceofparticle-velocityfluctuationsCUPDC, C U R D C ,  
and timescale ratio r crossing the particle mixing layer. All the quantities shown in 
the figures (except figure 4) are non-dimensional, 

The development of the layer is approximately self-preserving for large times, with 
all lengthscales growing approximately as Xi ; we have consequently plotted our 
profiles as functions of Z/Xi. 

In  figure 3, the evolution of turbulent energy and effective diffusivity are also 
presented. To see the influence of inertia, we also present in figure 2 calculations in 
which we set inertia to zero (i.e. 7p = 0). From these figures, we see that the inertia 
of the particles increases the fluctuations of particle concentration 2. Clearly an 
initially uniform distribution of particles with inertia in a non-uniform velocity field 
would develop non-uniformities of concentration. We can also see that the flux CW 
and ac/az are both decreased by the inertia of the particles. This means that the 
effective diffusivity (the ratio of these two) will not be significantly changed by 
the particle inertia. This matches the asymptotic theory (Csanady 1963) that the 
effective diffusivity of the particles is independent of particle inertia. In this 
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57 pm Wells & Stock (1983) 
0 5 pm ) (From displacement) 

57 pm 1 Wells & StocXTT83) 
0 5 pm I (From autocorrelation) 

A 57 ~m } Present MIculation 
0 5pm 

S Corn pollen (1971) 
b Hollow glass 

00 Corn pollen 

Y 
Snyder & Lumle) 

Present I calculation 

I OO ’B.’; 87pm 

87pm 

Hollow glass 

09 

--- Csanady (1963) 

m o  O ’ \ g  
’\ 

+ ‘ A T  

’\ a 
‘\ e A. 0 

0 0  
\. 

\ $  a--. 
0 

25 50 75 100 I 
I I I I 

v,, ( W 5 )  

FIGURE 4. Comparison of the diffusivity calculated at the middle 
of mixing layer with experiment. 

5 

particular calculation, the inertia of the particles increased the diffusivity by less 
than 5 % . 

The shape of the effective diffusivity profile y deserves some explanation. Lumley 
pointed out that the diffusivity would be increased in the lower part and decreased 
in the upper part by the influx of the variance of concentration, which has a different 
gradient in the upper and lower part of the mixing layer (Lottey et al. 1983). Here 
the situation is different because there is a mean-velocity component w = - V,, ; hence 
- the second term in the flux equations, wa%/az, will over-balance the third term 
C, , V,, which contains the influence of the influx of concentration. Our calculations 
show that the diffusivity is higher in the upper part and lower in the lower part. 

To see the influence of the crossing-trajectories effect, we calculate the heavy 
(57 pm glass) particles with terminal velocities of 50 cm/s, 75 cm/s, 100 cm/s and 
125 cm/s and the light particles (5 pm glass) with terminal velocities 0.188 cm/s, 
20 cm/s and 25 cm/s. The profiles of all quantities are quite similar to the profiles 
in figures 2 and 3. From these calculations, we see that the main influence of the 
crossing-trajectories effect is to decrease the particle dispersion and related 
quantities. 

We also calculated the particles (hollow glass, 87 pm glass and corn pollen) which 
correspond to Snyder & Lumley’s (1971) experiments. 

Figure 4 is the comparison with experiment of the diffusivity of all particles 
calculated at the middle of the mixing layer. The calculated value of diffusivity is 
taken at X / M  = 90 for comparing with Wells & Stock’s data and at X / M  = 210 for 
Snyder & Lumley’s data. Figure 4 shows that the diffusivity from different 



362 T.-H. Shih and J. L. Lumley 

measurements (particle displacement and autocorrelation) are quite scattered. 
However, our calculations are in reasonable agreement with experimental data. 

Note that the curve obtained from Csanady (1963) does an excellent job. Our 
second-order model would be unnecessary if Csanady 's parametrization could be 
applied everywhere. However, this simple parametrization (for a discussion see 
Lumley 1978c) is restricted to long times and homogeneous situations. The purpose 
of developing our elaborate second-order model, which we are here calibrating in an 
essentially homogeneous situation (at least insofar as the velocity field is concerned), 
and for large times, is that it can be applied in inhomogeneous, unsteady, more 
practical situations, unlike the Csanady parametrization. 

Finally, from figure 3 we may notice that the difference of density-weighted and 
conventional particle mean velocity is quite significant in the lower-density region. 
This essentially reflects the fact that particles finding themselves far from the centre 
of the mixing layer (in the low-density region) must have been travelling faster than 
average. This is important for measurements with the laser-Doppler anemometer, 
as we expect that the presence or absence of particles at the measuring point (severe 
in the lower density region) will introduce a considerable bias in the measured 
velocity. 
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